

Enhancing the generation of parameters for BGV

Matilda Urani

In collaborazione con Beatrice Biasioli, Chiara Marcolla e Nadir Murru

23 Maggio 2025

Introduzione

La **crittografia omomorfa** consente di eseguire operazioni **direttamente su dati cifrati** senza la necessità di decifrarli precedentemente.

$$\mathsf{Enc}_{pk}(m_1) \times \mathsf{Enc}_{pk}(m_2) = \mathsf{Enc}_{pk}(m_1 \times m_2)$$

$$\mathsf{Enc}_{pk}(m_1) + \mathsf{Enc}_{pk}(m_2) = \mathsf{Enc}_{pk}(m_1 + m_2)$$

Nozioni Preliminari

Definizione

Sia m un intero positivo. L'm-esimo polinomio ciclotomico è definito come

$$\Phi_m(x) = \prod_{\substack{1 \le i < m \\ \gcd(i,m)=1}} (x - \zeta^i)$$

dove ζ è una radice m-esima primitiva dell'unità.

Questo polinomio ha grado $\phi(m)$, dove ϕ denota la funzione di Eulero.

Definizione

Dati $d, m \in \mathbb{N}$, denotiamo con R_d l'anello

$$R_d = \frac{\mathbb{Z}_d[x]}{\Phi_m(x)}$$

BGV: Funzioni Principali

Si fissano i seguenti parametri:

- $m \in \mathbb{N}$, che determina il **polinomio ciclotomico** $\Phi_m(x)$
- $t \in \mathbb{N}$, il modulo del plaintext
- $q \in \mathbb{N}$, il modulo del ciphertext

BGV: Funzioni Principali

Si fissano i seguenti parametri:

- $m \in \mathbb{N}$, che determina il **polinomio ciclotomico** $\Phi_m(x)$
- $t \in \mathbb{N}$, il modulo del plaintext
- $q \in \mathbb{N}$, il modulo del ciphertext

BGV è composto da tre funzioni principali:

- Key Generation
- Encryption
- Decryption

Key Generation

La **chiave segreta** sk e la **chiave pubblica** pk sono generate come segue:

$$\begin{cases} sk = s \\ pk = (b, a) \equiv (-a \cdot s + te, a) \mod q \end{cases}$$

dove $s \leftarrow \chi_s$, $a \leftarrow \mathcal{U}_q$ ed $e \leftarrow \chi_e$.

Solitamente

- $\chi_s = \mathcal{U}_3$
- $\chi_e = \mathcal{DG}_q(3.19^2)$

- \mathcal{U}_q è la distribuzione uniforme su $\mathbb{Z}/q\mathbb{Z}$
- $\mathcal{DG}_q(\sigma^2)$ è la distribuzione gaussiana discreta, con media 0 e varianza σ^2

Encryption

Dato:

- un plaintext $m \in R_t$
- la chiave pubblica pk = (b, a)

La funzione di cifratura restituisce il ciphertext

$$c = (c_0, c_1) \equiv (b \cdot u + te_0 + m, a \cdot u + te_1) \mod q$$

dove:

- $u \leftarrow \chi_s$
- $e_0, e_1 \leftarrow \chi_e$

Decryption

Dato un ciphertext c e la rispettiva chiave segreta s, il plaintext viene recuperato effettuando i seguenti calcoli

$$m = \left[\left[c_0 + c_1 \cdot s \right]_q \right]_t$$

dove $[x]_q$ è la rappresentazione centrata di x modulo q.

La correttezza segue da

$$[c_0 + c_1 \cdot s]_q = [(b \cdot u + te_0 + m) + (a \cdot u + te_1) \cdot s]_q$$

$$= [(-a \cdot s + te) \cdot u + te_0 + m + (a \cdot u + te_1) \cdot s]_q$$

$$= [m + t(e \cdot u + e_1 \cdot s + e_0)]_q$$

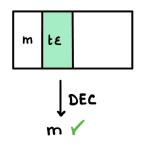
$$= [m + t\epsilon]_q$$

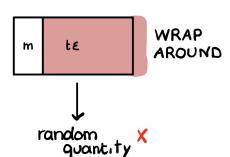
Questa quantità viene detta la quantità critica del ciphertext

$$\nu = [c_0 + c_1 \cdot s]_q$$

Fallimenti della Decryption

Può la decryption fallire? Sì



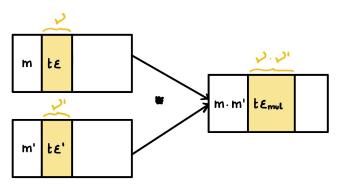


Per evitare che ciò accada, la seguente condizione deve essere soddisfatta:

$$\|\nu\|_{\infty} < \frac{q}{2}$$

Moltiplicazione Omomorfa

Ad ogni operazione omomorfa, il rumore aumenta, raggiungendo eventualmente un punto in cui **non è più possibile** recuperare il messaggio originale.



Obiettivo: Selezionare Correttamente q

Il modulo q deve essere:

- sufficientemente grande, per garantire la correttezza
- il più piccolo possibile, per migliorare l'efficienza

Per farlo, è fondamentale stimare con precisione la magnitudine della quantità critica, chiamata **rumore**, derivante dalle operazioni coinvolte nel circuito che vogliamo valutare.

Approcci Correnti

Ad oggi, due approcci principali:

- Il worst-case approach, che consiste nello stimare il rumore tramite la sua norma.
- L'average-case approach, che consiste nel trattare i coefficienti della quantità critica come variabili aleatorie e studiarne la varianza.

L'approccio average-case è ritenuto più promettente, poiché offre stime che si avvicinano maggiormente ai dati sperimentali.

Tuttavia, il metodo attuale [2] tende a **sottostimare il rumore**, introducendo vulnerabilità nella sicurezza.

La Nostra Proposta

Abbiamo dimostrato che la causa di questa sottostima è l'assunzione che i coefficienti del polinomio errore siano tra loro indipendenti.

Seguendo un approccio simile a quello presentato in [1] per BFV, abbiamo sviluppato un metodo che tiene conto di queste dipendenze, le quali, in BGV, risultano particolarmente impattanti, rendendo l'analisi più complessa.

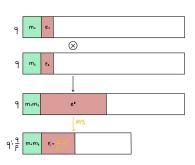
La Nostra Proposta

Abbiamo dimostrato che la causa di questa sottostima è l'assunzione che i coefficienti del polinomio errore siano tra loro indipendenti.

Seguendo un approccio simile a quello presentato in [1] per BFV, abbiamo sviluppato un metodo che tiene conto di queste dipendenze, le quali, in BGV, risultano particolarmente impattanti, rendendo l'analisi più complessa.

Abbiamo analizzato due diversi scenari:

- Circuiti senza modulo switch
- Circuiti con modulo switch



Il Nostro Scenario

Assumiamo di voler valutare un circuito di L-1 moltiplicazioni utilizzando lo schema $\mathsf{BGV}.$

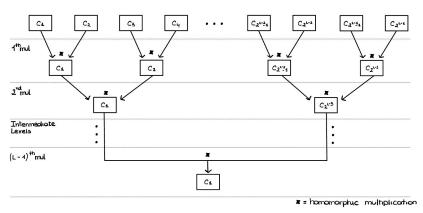


Figura: Circuito di riferimento

La Nostra Soluzione

Obiettivo: Stimare la varianza V_ℓ dei coefficienti della quantità critica al termine di ogni livello ℓ .

Limiti dell'approccio attuale:

• L'approccio average-case [2] approssima V_ℓ come:

$$V_{\ell} \leq \phi(m) V_{\ell-1}^2$$

Questo porta a una sottostima della varianza sperimentale, introducendo potenziali **vulnerabilità**.

Contributo della nostra ricerca:

Abbiamo dimostrato che:

$$V_{\ell} \leq \phi(m) h(\ell) V_{\ell-1}^2$$

dove la funzione $h(\ell)$ è costruita in modo da tener conto delle dipendenze tra i coefficienti dell'errore.

Fondamenti Teorici

Ogni quantità critica u può essere espressa come

$$u = \sum_{\iota} \mathsf{a}_{\iota} \mathsf{s}^{\iota} = \sum_{\iota} \sum_{\mu} b_{\mu}(\iota) \mathsf{e}^{\mu} \mathsf{s}^{\iota}$$

dove:

- e è il polinomio coinvolto nella generazione della chiave pubblica;
- s è la chiave segreta;
- $b_{\mu}(\iota)$ non contiene potenze di s ed e;

Fondamenti Teorici

Ogni quantità critica u può essere espressa come

$$u = \sum_{\iota} \mathsf{a}_{\iota} \mathsf{s}^{\iota} = \sum_{\iota} \sum_{\mu} \mathsf{b}_{\mu}(\iota) \mathsf{e}^{\mu} \mathsf{s}^{\iota}$$

dove:

- e è il polinomio coinvolto nella generazione della chiave pubblica;
- s è la chiave segreta;
- $b_{\mu}(\iota)$ non contiene potenze di s ed e;

Lemma

Sia $u = \sum_{\iota} \sum_{\mu} b_{\mu}(\iota) e^{\mu}$ una quantità critica generica. Allora

- a) $Cov(b_{\mu_1}(\iota_1)|_{j_1}, b_{\mu_2}(\iota_2)|_{j_2}) = 0$ per $\mu_1 \neq \mu_2$ o $j_1 \neq j_2$, $\forall \iota_1, \iota_2$;
- b) $\mathbb{E}[b_{\mu}(\iota)|_{i}] = 0$, $\forall \iota, \mu, i$;

Il Nostro Teorema Principale

Teorema

Siano $\nu = \sum_{\iota} a_{\iota} s^{\iota}, \nu' = \sum_{\iota} a'_{\iota} s^{\iota}$ le quantità critiche di due ciphertext, definite rispetto allo stesso modulo q. Allora

$$\mathsf{Var}((a_{\iota_1}s^{\iota_1}a'_{\iota_2}s^{\iota_2})|_i) \leq \phi(m)\mathsf{Var}((a_{\iota_1}s^{\iota_1})|_i)\mathsf{Var}((a'_{\iota_2}s^{\iota_2})|_i)F_s(\iota_1,\iota_2)F_e(K_1,K_2)$$

dove K₁, K₂ derivano dalle espansioni

$$a_{\iota_1} = \sum_{\mu_1=0}^{K_1} b_{\mu_1}(\iota_1) e^{\mu_1}, \quad a'_{\iota_2} = \sum_{\mu_2=0}^{K_2} b'_{\mu_2}(\iota_2) e^{\mu_2}$$

e rappresentano, rispettivamente, la più grande potenza di e che compare in $a_{\iota_1}, a'_{\iota_2}.$

Una definizione di F_s , F_e si può trovare in [1].

Confronto Tra Approcci

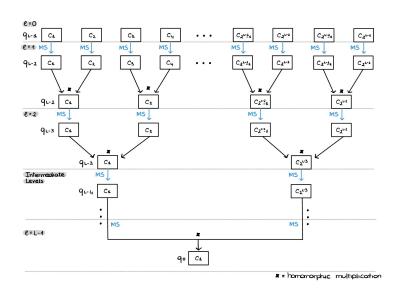
ℓ	0	1	2	3	4	5
[2]	19.9	52.9	118.7	250.5	513.9	1040.8
exp	19.9	53.5	121.6	260.2	541.3	1101.4
our	19.9	53.6	121.9	261.1	546.5	1131.1

Tabella: Confronto delle varianze per circuiti senza modulo switch

Nella tabella sono riportati i valori di $\log_2(V_\ell)$ per un circuito con sei livelli. Nello specifico:

- [2] rappresenta le stime fornite dall'approccio average-case attuale
- exp rappresenta i valori sperimentali ottenuti da 1000 campioni
- our fa riferimento ai risultati ottenuti utilizzando il nostro bound

Circuiti con Modulo Switch



Stima delle Varianze e Selezione dei Moduli

ℓ	0	1	2	3	4	5
[2]	19.9	38.8	37.0	37.0	37.0	37.0
exp	19.9	39.5	38.0	38.0	38.0	38.0
our	19.9	39.6	38.1	38.1	38.1	40.7

Tabella: Confronto delle varianze per circuiti con modulo switch

ℓ	0	1	2	3	4	5
[2]	23.6	37.1	50.6	64.1	77.6	81.7
can	58.2	87.8	117.3	146.9	176.5	184.4
our	35.4	53.8	72.2	90.6	109.1	113.2

Tabella: Confronto di $\log_2(q_\ell)$

Conclusioni¹

I Nostri Risultati:

- Dimostrazione dell'importanza di considerare le dipendenze tra i coefficienti delle quantità critiche.
- Sviluppo di un nuovo metodo per stimare le varianze, sia per circuiti senza che con modulo switch.
- Costruzione di un metodo per selezionare correttamente i moduli del ciphertext.

La nostra soluzione garantisce che **il rumore non sia mai sottostimato**, fornendo stime molto vicine ai dati sperimentali e migliorando significativamente l'efficienza del sistema.

Grazie per l'attenzione!

Riferimenti

- [1] Beatrice Biasioli, Chiara Marcolla, Marco Calderini e Johannes Mono. Improving and Automating BFV Parameters Selection: An Average-Case Approach. Cryptology ePrint Archive, Paper 2023/600. 2023. URL: https://eprint.iacr.org/2023/600.
- [2] Sean Murphy e Rachel Player. A Central Limit Framework for Ring-LWE Noise Analysis. Cryptology ePrint Archive, Paper 2019/452. 2019. URL: https://eprint.iacr.org/2019/452.